II. On the magnetic phenomena produced by Electricity; in a letter from Sir H. DAVY, Bart. F. R. S. to W. H. WOLLASTON, M. D. P. R. S.

Read November 16, 1820.

MY DEAR SIR,

THE similarity of the laws of electrical and magnetic attraction has often impressed philosophers; and many years ago, in the progress of the discoveries made with the voltaic pile, some enquirers (particularly M. RITTER,*) attempted to establish the existence of an identity or intimate relation between these two powers; but their views being generally

* M. RITTER asserted that a needle composed of silver and zinc arranged itself in the magnetic meridian, and was slightly attracted and repelled by the poles of a magnet; and that a metallic wire, after being exposed in the voltaic circuit, took a direction N. E. and S. E. His ideas are so obscure, that it is often difficult to understand them; but he seems to have had some vague notion that electrical combinations, when not exhibiting their electrical tension, were in a magnetic state, and that there was a kind of electro-magnetic meridian depending upon the electricity of the earth. See Annales de Chimie, T. 64, p. 80. Since this letter has been written, Dr. MARCET has been so good as to send me from Genoa, some pages of ALDINI on Galvanism, and of IZARN's Manual of Galvanism, published at Paris more than sixteen years ago. M. Mojon, senior, of Genoa, is quoted in these pages as having rendered a steel needle magnetic, by placing it in a voltaic circuit for a great length of time. This, however, seems to have been dependent merely upon its place in the magnetic meridian, or upon an accidental curvature of it; but M. Romagness, of Trente, is stated to have discovered that the pile of Volta caused a declination of the needle; the details are not given, but if the general statement be correct, the author could not have observed the same fact as M. OERSTED, but merely supposed that the needle had its magnetic poles altered after being placed in the voltaic circuit as a part of the electrical combination.

obscure, or their experiments inaccurate, they were neglected: the chemical and electrical phenomena exhibited by the wonderful combination of Volta, at that time almost entirely absorbed the attention of scientific men; and the discovery of the fact of the true connection between electricity and magnetism, seems to have been reserved for M. Oersted, and for the present year.

This discovery, from its importance and unexpected nature, cannot fail to awaken a strong interest in the scientific world; and it opens a new field of enquiry, into which many experimenters will undoubtedly enter: and where there are so many objects of research obvious, it is scarcely possible that similar facts should not be observed by different persons. The progress of science is, however, always promoted by a speedy publication of experiments; hence, though it is probable that the phenomena which I have observed may have been discovered before, or at the same time in other parts of Europe, yet I shall not hesitate to communicate them to you, and through you to the Royal Society.

I found, in repeating the experiments of M. Oersted with a voltaic apparatus of one hundred pair of plates of four inches, that the south pole of a common magnetic needle (suspended in the usual way) placed under the communicating wire of platinum, (the positive end of the apparatus being on the right hand) was strongly attracted by the wire, and remained in contact with it, so as entirely to alter the direction of the needle, and to overcome the magnetism of the earth. This I could only explain by supposing that the wire itself became magnetic during the passage of the electricity through it, and direct experiments, which I immediately made, proved that this was the case. I threw

some iron filings on a paper, and brought them near the communicating wire, when immediately they were attracted by the wire, and adhered to it in considerable quantities, forming a mass round it ten or twelve times the thickness of the wire: on breaking the communication, they instantly fell off, proving that the magnetic effect depended entirely on the passage of the electricity through the wire. I tried the same experiment on different parts of the wire, which was seven or eight feet in length, and about the twentieth of an inch in diameter, and I found that the iron filings were every where attracted by it; and making the communication with wires between different parts of the battery, I found that iron filings were attracted, and the magnetic needle affected in every part of the circuit.

It was easy to imagine that such magnetic effects could not be exhibited by the electrified wire without being capable of permanent communication to steel. I fastened several steel needles, in different directions, by fine silver wire to a wire of the same metal, of about the thirtieth of an inch in thickness and eleven inches long, some parallel, others transverse, above and below in different directions; and I placed them in the electrical circuit of a battery of thirty pairs of plates of nine inches by five, and tried their magnetism by means of iron filings: they were all magnetic: those which were parallel to the wire attracted filings in the same way as the wire itself, but those in transverse directions exhibited each two poles, which being examined by the test of delicate magnets, it was found that all the needles that were placed under the wire (the positive end of the battery being east) had their north poles on the south side of the wire, and their

south poles on the north side; and that those placed over, had their south poles turned to the south, and their north poles turned to the north; and this was the case whatever was the inclination of the needles to the horizon. On breaking the connection, all the steel needles that were on the wire in a transverse direction retained their magnetism, which was as powerful as ever, whilst those which were parallel to the silver wire appeared to lose it at the same time as the wire itself.

I attached small longitudinal portions of wires of platinum, silver, tin, iron, and steel, in tranverse directions, to a wire of platinum that was placed in the circuit of the same battery. The steel and the iron wire immediately acquired poles in the same manner as in the last experiment; the other wires seemed to have no effect, except in acting merely as parts of the electrical circuit; the steel retained its magnetism as powerfully after the circuit was broken as before; the iron wire immediately lost a part of its polarity, and in a very short time the whole of it.

The battery was placed in different directions as to the poles of the earth; but the effect was uniformly the same. All needles placed transversely under the communicating wires, the positive end being on the right hand, had their north poles turned towards the face of the operator, and those above the wire their south poles; and on turning the wire round to the other side of the battery, it being in a longitudinal direction, and marking the side of the wire, the same side was always found to possess the same magnetism; so that in all arrangements of needles transversely round the wire, all the needles above had north and south poles oppo-

site to those below, and those arranged vertically on one side, opposite to those arranged vertically on the other side.

I found that contact of the steel needles was not necessary, and that the effect was produced instantaneously by the mere juxta-position of the needle in a transverse direction, and that through very thick plates of glass: and a needle that had been placed in a transverse direction to the wire merely for an instant, was found as powerful a magnet as one that had been long in communication with it.

I placed some silver wire of $\frac{1}{20}$ of an inch and some of $\frac{1}{50}$, in different parts of the voltaic circuit when it was completed, and shook some steel filings on a glass plate above them; the steel filings arranged themselves in right lines always at right angles to the axis of the wire; the effect was observed, though feebly, at the distance of a quarter of an inch above the thin wire, and the arrangement in lines was nearly to the same length on each side of the wire.

I ascertained by several experiments, that the effect was proportional to the quantity of electricity passing through a given space, without any relation to the metal transmitting it: thus, the finer the wires the stronger their magnetism.

A zinc plate of a foot long and six inches wide arranged with a copper plate on each side, was connected, by a very fine wire of platinum, according to your method; and the plates were plunged an inch deep in diluted nitric acid. The wire did not sensibly attract fine steel filings. When they were plunged two inches, the effect was sensible; and it increased with the quantity of immersion. Two arrangements of this kind acted more powerfully than one; but when the two were combined so as to make the zinc and copper-plates but

parts of one combination, the effect was very much greater. This was shown still more distinctly in the following experiment. Sixty zinc plates with double copper-plates were arranged in alternate order, and the quantity of iron filings which a wire of a determinate thickness took up observed: the wire remaining the same, they were arranged so as to make a series of thirty; the magnetic effect appeared more than twice as great; that is, the wire raised more than double the quantity of iron filings.

The magnetism produced by voltaic electricity seems (the wire transmitting it remaining the same) exactly in the same ratio as the heat; and however great the heat of a wire, its magnetic powers were not impaired. This was distinctly shown in transmitting the electricity of twelve batteries of ten plates each of zinc, with double copper arranged as three, through fine platinum wire, which when so intensely ignited as to be near the point of fusion, exhibited the strongest magnetic effects, and attracted large quantities of iron filings and even small steel needles from a considerable distance.

As the discharge of a considerable quantity of electricity through a wire seemed necessary to produce magnetism, it appeared probable, that a wire electrified by the common machine would not occasion a sensible effect; and this I found was the case, on placing very small needles across a fine wire connected with a prime conductor of a powerful machine and the earth. But as a momentary exposure in a powerful electrical circuit was sufficient to give permanent polarity to steel, it appeared equally obvious, that needles placed transversely to a wire at the time that the electricity of a common Leyden battery was discharged through it,

ought to become magnetic; and this I found was actually the case, and according to precisely the same laws as in the voltaic circuit; the needle *under* the wire, the positive conductor being on the right hand, offering its north pole to the face of the operator, and the needle *above*, exhibiting the opposite polarity.

So powerful was the magnetism produced by the discharge of an electrical battery of 17 square feet highly charged, through a silver wire of $\frac{1}{20}$ of an inch, that it rendered bars of steel of two inches long and from $\frac{1}{20}$ to $\frac{1}{10}$ in thickness, so magnetic, as to enable them to attract small pieces of steel wire or needles; and the effect was communicated to a distance of five inches above or below or laterally from the wire, through water or thick plates of glass or metal electrically insulated.

The facility with which experiments were made with the common Leyden battery, enabled me to ascertain several circumstances which were easy to imagine, such as that a tube filled with sulphuric acid of $\frac{1}{4}$ of an inch in diameter, did not transmit sufficient electricity to render steel magnetic: that a needle placed transverse to the explosion through air, was less magnetized than when the electricity was passed through wire; that steel bars exhibited no polarity (at least at their extremities) when the discharge was made through them as part of the circuit, or when they were placed parallel to the discharging wire; that two bars of steel fastened together, and having the discharging wire placed through their common centre of gravity, showed little or no signs of magnetism after the discharge till they were separated, when they exhibited their north and south poles opposite to each other, according to the law of position.

These experiments distinctly showed, that magnetism was produced whenever concentrated electricity passed through space; but the precise circumstances, or law of its production, were not obvious from them. When a magnet is made to act on steel filings, these filings arrange themselves in curves round the poles, but diverge in right lines; and in their adherence to each other form right lines, appearing as spicula. In the attraction of the filings round the wire in the voltaic circuit, on the contrary, they form one coherent mass, which would probably be perfectly cylindrical were it not for the influence of gravity. In first considering the subject, it appeared to me that there must be as many double poles as there could be imagined points of contact round the wire; but when I found the N. and S. poles of a needle uniformly attracted by the same quarters of the wire, it appeared to me that there must be four principal poles corresponding to these four quarters. You, however, pointed out to me that there was nothing definite in the poles, and mentioned your idea. that the phenomena might be explained, by supposing a kind of revolution of magnetism round the axis of the wire, depending for its direction upon the position of the negative and positive sides of the electrical apparatus.

To gain some light upon this matter, and to ascertain correctly the relations of the north and south poles of steel magnetized by electricity to the positive and negative state, I placed short steel needles round a circle made on pasteboard, of about two inches and half in diameter, bringing them near each other, though not in contact, and fastening them to the paste-board by thread, so that they formed the sides of a hexagon inscribed within the circle. A wire was

fixed in the centre of this circle, so that the circle was parallel to the horizon, and an electric shock was passed through the wire, its upper part being connected with the positive side of a battery, and its lower part with the negative. After the shock all the wires were found magnetic, and each had two poles; the south pole being opposite to the north pole of the wire next to it, and vice versa; and when the north pole of a needle was touched with a wire, and that wire moved round the circle to the south pole of the same needle, its motion was opposite to that of the apparent motion of the sun.

A similar experiment was tried with six needles arranged in the same manner; with only this difference, that the wire positively electrified was below. In this case the results were precisely the same, except that the poles were reversed; and any body, moved in the circle from the north to the south pole of the same needle, had its direction from east to west.

A number of needles were arranged as polygons in different circles round the same piece of paste-board, and made magnetic by electricity; and it was found that in all of them, whatever was the direction of the paste-board, whether horizontal or perpendicular, or inclined to the horizon, and whatever was the direction of the wire with respect to the magnetic meridian, the same law prevailed; for instance, when the positive wire was east, and a body was moved round the circle from the north to the south poles of the same wire; its motion (beginning with the lower part of the circle) was from north to south, or with the upper part from south to north; and when the needles were arranged round a cylinder of paste-board so as to cross the wire, and a pencil mark drawn in the direction of the poles, it formed a spiral.

It was perfectly evident from these experiments, that as many polar arrangements may be formed as chords can be drawn in circles surrounding the wire; and so far these phenomena agree with your idea of revolving magnetism; but I shall quit this subject, which I hope you will yourself elucidate for the information of the Society, to mention some other circumstances and facts belonging to the enquiry.

Supposing powerful electricity to be passed through two, three, four, or more wires, forming part of the same circuit parallel to each other in the same plane, or in different planes, it could hardly be doubted that each wire, and the space around it, would become magnetic in the same manner as a single wire, though in a less degree; and this I found was actually the case. When four wires of fine platinum were made to complete a powerful voltaic circuit, each wire exhibited its magnetism in the same manner, and steel filings on the sides of the wires opposite attracted each other.

As the filings on the opposite sides of the wire attracted each other in consequence of their being in opposite magnetic states, it was evident, that if the similar sides could be brought in contact, steel filings upon them would repel each other.— This was very easily tried with two voltaic batteries arranged parallel to each other, so that the positive end of one was opposite to the negative end of the other: steel filings upon two wires of platinum joining the extremities strongly repelled each other. When the batteries were arranged in the same order, i. e. positive opposite to positive, they attracted each other; and wires of platinum (without filings) and fine steel wire (still more strongly) exhibited similar phenomena of attraction and repulsion under the same circumstances.

As bodies magnetized by electricity put a needle in motion, it was natural to infer that a magnet would put bodies magnetized by electricity in motion; and this I found was the case. Some pieces of wire of platinum, silver, and copper, were placed separately upon two knife edges of platinum connected with two ends of a powerful voltaic battery, and a magnet presented to them; they were all made to roll along the knife edges, being attracted when the north pole of the magnet was presented, the positive side of the battery being on the right hand, and repelled when it was on the left hand; and vice versa, changing the pole of the magnet. Some folds of gold leaf were placed across the same apparatus, and the north pole of a powerful magnet held opposite to them; the folds approached the magnet, but did not adhere to it. On the south pole being presented, they receded from it.

I will not indulge myself by entering far into the theoretical part of this subject; but a number of curious speculations cannot fail to present themselves to every philosophical mind, in consequence of the facts developed; such as whether the magnetism of the earth may not be owing to its electricity, and the variation of the needle to the alterations in the electrical currents of the earth in consequence of its motions, internal chemical changes, or its relations to solar heat; and whether the luminous effects of the auroras at the poles are not shown, by these new facts, to depend on electricity. This is evident, that if strong electrical currents be supposed to follow the apparent course of the sun, the magnetism of the earth ought to be such as it is found to be.

But I will quit conjectures, to point out a simple mode of making powerful magnets, namely, by fixing bars of steel MDCCCXXI.

across, or circular pieces of steel fitted for making horse-shoe magnets, round the electrical conductors of buildings in elevated and exposed situations.*

The experiments detailed in these pages were made with the apparatus belonging to the Royal and London Institution; and I was assisted in many of them by Mr. Pepys, Mr. Allen, and Mr. Stodart, and in all of them by Mr. Faraday.†

I am, my dear Sir,

very sincerely yours,

HUMPHRY DAVY.

Lower Grosvenor Street, Nov. 12, 1820.

- * There are many facts recorded in the Philosophical Transactions which prove the magnetizing powers of lightning; one in particular, where a stroke of lightning passing through a box of knives, rendered most of them powerful magnets. See Philosophical Transactions, No. 157, p. 520; and No. 437, p. 57.
- † All the experiments detailed in this paper, except those mentioned p. 15, were made in the course of October, 1820; the last arose in consequence of a conversation with Dr. Wollaston, and were made in the beginning of November. I find, by the Annales de Chimie et de Physique, for September, which arrived in London November 24, that M. Arago has anticipated me in the discovery of the attractive and magnetizing powers of the wires in the voltaic circuit; but the phenomena presented by the action of common electricity (which I believe as yet have been observed by no other person), induce me still to submit my paper to the Council of the Royal Society. Before any notice arrived of the researches of the French philosophers, I had tried, with Messrs. Allen and Pepys, an experiment, which M. Arago likewise thought of,—whether the arc of flame of the voltaic battery would be affected by the magnet; but from the imperfection of our apparatus, the results were not decisive. I hope soon to be able to repeat it under new circumstances.

I have made various experiments, with the hope of affecting electrified wires by the magnetism of the earth, and of producing chemical changes by magnetism; but without any successful results.

Since I have perused M. AMPRRE's elaborate treatise on the electro-magnetic phenomena, I have passed the electrical shock along a spiral wire twisted round a glass

tube containing a bar of steel, and I found that the bar was rendered powerfully magnetic by the process.

Without meaning to offer any decided opinion on that Gentleman's ingenious views, I shall beg permission to mention two circumstances, which seem to me unfavourable to the idea of the identity of electricity and magnetism; 1st. the great distance to which magnetism is communicated by common electricity (I found that a steel bar was made magnetic at 14 inches distance from a wire transmitting an electric shock from about 70 feet of charged surface); and, 2d. that the effect of magnetizing at a distance by electricity takes place with the same readiness through air and water, glass, mica, or metals; i.e. through conductors and non-conductors.